A diffusion approximation for selection and drift in a subdivided population.
نویسندگان
چکیده
The population-genetic consequences of population structure are of great interest and have been studied extensively. An area of particular interest is the interaction among population structure, natural selection, and genetic drift. At first glance, different results in this area give very different impressions of the effect of population subdivision on effective population size (N(e)), suggesting that no single value of N(e) can completely characterize a structured population. Results presented here show that a population conforming to Wright's island model of subdivision with genic selection can be related to an idealized panmictic population (a Wright-Fisher population). This equivalent panmictic population has a larger size than the actual population; i.e., N(e) is larger than the actual population size, as expected from many results for this type of population structure. The selection coefficient in the equivalent panmictic population, referred to here as the effective selection coefficient (s(e)), is smaller than the actual selection coefficient (s). This explains how the fixation probability of a selected allele can be unaffected by population subdivision despite the fact that subdivision increases N(e), for the product N(e)s(e) is not altered by subdivision.
منابع مشابه
Environmental variation, fluctuating selection and genetic drift in subdivided populations.
Although there have many studies of the population genetical consequences of environmental variation, little is known about the combined effects of genetic drift and fluctuating selection in structured populations. Here we use diffusion theory to investigate the effects of temporally and spatially varying selection on a population of haploid individuals subdivided into a large number of demes. ...
متن کاملThe many-demes limit for selection and drift in a subdivided population.
A diffusion approximation is obtained for the frequency of a selected allele in a population comprised of many subpopulations or demes. The form of the diffusion is equivalent to that for an unstructured population, except that it occurs on a longer time scale when migration among demes is restricted. This many-demes diffusion limit relies on the collection of demes always being in statistical ...
متن کاملSex ratio evolution through group selection using diffusion approximation.
We consider a haploid, hermaphrodite population subdivided into an infinite number of demes of finite size N. Assuming recurrent mutation, random union of gametes, partial dispersal, genetic drift, and incorporating group competition, a diffusion approximation is used to describe the evolution of sex ratio, corresponding to sex allocation to male versus female functions. The stationary distribu...
متن کاملSelection and drift in subdivided populations: a straightforward method for deriving diffusion approximations and applications involving dominance, selfing and local extinctions.
Population structure affects the relative influence of selection and drift on the change in allele frequencies. Several models have been proposed recently, using diffusion approximations to calculate fixation probabilities, fixation times, and equilibrium properties of subdivided populations. We propose here a simple method to construct diffusion approximations in structured populations; it rel...
متن کاملFixation properties of subdivided populations with balancing selection.
In subdivided populations, migration acts together with selection and genetic drift and determines their evolution. Building upon a recently proposed method, which hinges on the emergence of a time scale separation between local and global dynamics, we study the fixation properties of subdivided populations in the presence of balancing selection. The approximation implied by the method is accur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 163 1 شماره
صفحات -
تاریخ انتشار 2003